NOVATOTIVS TERRARVM ORBIS GEOGRAPHICA AC HYDROGRAPHICA TABVLA. Auch Henri-Hondio.

What have we learned (recently) in PHENIX?

Paul Stankus

Oak Ridge National Lab

Hard Probes 2013

Nov. 4, Stellenbosch, SA

The Old World:

Large systems
Symmetric systems
Focus at mid-rapidity

Simplest path to QGP

Standard-ish Model: CNM+QGP

The New World:

Asymmetric systems
Measure away from
mid-rapidity

Take the "Standard Model" out on the road...

J/Psi in U+U

Jet-Medium Interactions

PRL 111, 32301 (2013)

Modified FF from γ +jet

Jet-Medium Interactions

PRL 111, 32301 (2013)

Modified FF from γ +jet

arXiv:1309.4437

 v_2 , v_4 of π^0 , η to 15 GeV/c

J/Psi in Cu+Au

Where is the difference between (denser) Au-going and (thinner) Cu-going hot media?

d+Au to forward/backward J/Psi

R_{dAu} for J/Psi in min-bias d+Au

For inclusive d+Au, CNM modifications capture forward/ backward difference (but geometry dependence is harder).

Heavy flavor leptons, forward/back

Forward-backward difference seen, but larger than from EPS09

Heavy flavor leptons, forward/back

Forward-backward difference seen, but larger than from EPS09

Heavy flavor leptons, forward/back

Backward, Au-going effect larger for HF than for J/Psi

Charm boost follows N_{Part}

Heavy-flavor electrons in three systems

Charm boost follows N_{Part}

Heavy-flavor electrons in three systems

arXiv:1310.8286

Single charm is pushed but never destroyed; is trend with N_{Part} indicative of medium effect?

Psi' (over?) suppression in d+Au

arXiv:1315.5516, to be publ PRL

Psi' (over?) suppression in d+Au

arXiv:1315.5516, to be publ PRL

Relative suppression of Psi' compared to J/Psi – is it a created medium effect?

Flow in d+Au?

Charged pairs at mid-rapidity over $\Delta \phi$; central, peripheral and difference

Flow in d+Au?

Charged pairs at mid-rapidity over $\Delta \phi$; central, peripheral and difference

Quadrupole anisotropy allows extraction of singles v_2

arXiv:1303.1794 to be publ. PRL

Near-side "ridge" in d+Au?

Pair central arm tracks with MPC-S, $\Delta \eta \sim 3.4$

Near-side "ridge" in d+Au?

Pair central arm tracks with MPC-S, $\Delta \eta \sim 3.4$

Near-side "ridge" in d+Au?

Pair central arm tracks with MPC-S, $\Delta \eta \sim 3.4$

More news.

cc vs bb separation via dielectrons in d+Au across mass and p_{T}

Centrality dependence of excess direct photons

Summary

- New observables in large, symmetric A+A
 - γ +jet, π^0 , ηv_2 to high p_T , excess direct γ
- Small and asymmetric systems
 - Wealth of new results in d+Au
 - Geometry of CNM effects?
 - Many indications of created medium in d+Au:
 - Charm radial boost?
 - Psi' relative suppression
 - Near-side ridge and elliptic anisotropy

Ask me about...

PHENIX limits on "dark photon" production

Backup material

Geometry of CNM effects?

2/8

Search in π⁰ Dalitz decays

Measurement of $\pi^0 \rightarrow \gamma U \rightarrow \gamma e^+e^-$ in π^0 Dalitz decays

- Detection of e⁺e⁻ pairs from the dark photons in the π⁰
 Dalitz decayed e⁺e⁻ pairs
 - ✓ The dark photon exclusively decays into e⁺e⁻ pair.
 - ✓ Its natural width is practically zero.
 - Expected peak width = mass resolution

Important requirements for the dark photon search

- 1. Large data samples of e⁺e⁻ from π⁰ Dalitz decays
- 2. A very good mass resolution of e+e-

Slide from Yorito Yamaguchi DNP 2013